skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hotchkiss, Erin_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Headwater wetlands are important sites for carbon storage and emissions. While local- and landscape-scale factors are known to influence wetland carbon biogeochemistry, the spatial and temporal heterogeneity of these factors limits our predictive understanding of wetland carbon dynamics. To address this issue, we examined relationships between carbon dioxide (CO2) and methane (CH4) concentrations with wetland hydrogeomorphology, water level, and biogeochemical conditions. We sampled water chemistry and dissolved gases (CO2and CH4) and monitored continuous water level at 20 wetlands and co-located upland wells in the Delmarva Peninsula, Maryland, every 1–3 months for 2 years. We also obtained wetland hydrogeomorphologic metrics at maximum inundation (area, perimeter, and volume). Wetlands in our study were supersaturated with CO2(mean = 315 μM) and CH4(mean = 15 μM), highlighting their potential role as carbon sources to the atmosphere. Spatial and temporal variability in CO2and CH4concentrations was high, particularly for CH4, and both gases were more spatially variable than temporally. We found that groundwater is a potential source of CO2in wetlands and CO2decreases with increased water level. In contrast, CH4concentrations appear to be related to substrate and nutrient availability and to drying patterns over a longer temporal scale. At the landscape scale, wetlands with higher perimeter:area ratios and wetlands with higher height above the nearest drainage had higher CO2and CH4concentrations. Understanding the variability of CO2and CH4in wetlands, and how these might change with changing environmental conditions and across different wetland types, is critical to understanding the current and future role of wetlands in the global carbon cycle. 
    more » « less
  2. Abstract In this paper we demonstrate that several ubiquitous hyporheic exchange mechanisms can be represented simply as a one‐dimensional diffusion process, where the diffusivity decays exponentially with depth into the streambed. Based on a meta‐analysis of 106 previously published laboratory measurements of hyporheic exchange (capturing a range of bed morphologies, hydraulic conditions, streambed properties, and experimental approaches) we find that the reference diffusivity and mixing length‐scale are functions of the permeability Reynolds Number and Schmidt Number. These dimensionless numbers, in turn, can be estimated for a particular stream from the median grain size of the streambed and the stream's depth, slope, and temperature. Application of these results to a seminal study of nitrate removal in 72 headwater streams across the United States, reveals: (a) streams draining urban and agricultural landscapes have a diminished capacity for in‐stream and in‐bed mixing along with smaller subsurface storage zones compared to streams draining reference landscapes; (b) under steady‐state conditions nitrate uptake in the streambed is primarily biologically controlled; and (c) median reaction timescales for nitrate removal in the hyporheic zone are 0.5 and 20 hr for uptake by assimilation and denitrification, respectively. While further research is needed, the simplicity and extensibility of the framework described here should facilitate cross‐disciplinary discussions and inform reach‐scale studies of pollutant fate and transport and their scale‐up to watersheds and beyond. 
    more » « less